i-------------©
¦ ASSEMBLY II ¦
È-------------¥
Mais alguns conceitos säo necessários para que o pretenso
programador ASSEMBLY saiba o que está fazendo. Em eletrônica
digital estuda-se a algebra booleana e aritimética com números
binários. Aqui esses conceitos também säo importantes... Vamos
começar pela aritimética binária:
A primeira operaçäo básica - a soma - näo tem muitos
mistérios... basta recorrer ao equivalente decimal. Quando somamos
dois números decimais, efetuamos a soma de cada algarismo em
separado, prestando atençäo aos "vai um" que ocorrem entre um
algarismo e outro. Em binário fazemos o mesmo:
+---------------------------------------------------------------+
¦ 1010b + 0110b = ? ¦
¦ ¦
¦ 111 <- "Vai uns" ¦
¦ 1010b ¦
¦ + 0110b ¦
¦ --------- ¦
¦ 10000b ¦
+---------------------------------------------------------------+
Ora, na base decimal, quando se soma - por exemplo - 9 e 2, fica
1 e "vai um"... Tomemos o exemplo do odômetro (aquele indicador de
quilometragem do carro!): 09 -> 10 -> 11
Enquanto na base decimal existem 10 algarismos (0 até 9), na
base binária temos 2 (0 e 1). O odômetro ficaria assim:
00b -> 01b -> 10b -> 11b
Portanto, 1b + 1b = 10b ou, ainda, 0b e "vai um".
A subtraçäo é mais complicada de entender... Na base decimal
existem os números negativos... em binário nao! (Veremos depois
como "representar" um número negativo em binário!). Assim, 1b - 1b
= 0b (lógico), 1b - 0b = 1b (outra vez, evidente!), 0b - 0b = 0b
(hehe... você deve estar achando que eu estou te sacaneando, né?),
mas e 0b - 1b = ?????
A soluçäo é a seguinte: Na base decimal quando subtraimos um
algarismo menor de outro maior costumamos "tomar um emprestado" para
que a conta fique correta. Em binário a coisa funciona do mesmo
jeito, mas se näo tivermos de onde "tomar um emprestado" devemos
indicar que foi tomado um de qualquer forma:
+---------------------------------------------------------------+
¦ 0b - 1b = ? ¦
¦ ¦
¦ 1 <- Tomamos esse um emprestado de algum lugar! ¦
¦ 0b (näo importa de onde!) ¦
¦ - 1b ¦
¦ ------ ¦
¦ 1b ¦
+---------------------------------------------------------------+
Esse "1" que apareceu por mágica é conhecido como BORROW. Em um
número binário maior basta usar o mesmo artificio:
+---------------------------------------------------------------+
¦ 1010b - 0101b = ? ¦
¦ ¦
¦ 1 1 <- Os "1"s que foram tomados emprestados säo ¦
¦ 1010b subtraídos no proximo digito. ¦
¦ - 0101b ¦
¦ --------- ¦
¦ 0101b ¦
+---------------------------------------------------------------+
Faça a conta: 0000b - 0001b, vai acontecer uma coisa
interessante! Faça a mesma conta usando um programa, ou calculadora
cientifica, que manipule números binários... O resultado vai ser
ligairamente diferente por causa da limitaçäo dos digitos suportados
pelo software (ou calculadora). Deixo a conclusäo do "por que"
desta diferença para você... (Uma dica, faça a conta com os "n"
digitos suportados pela calculadora e terá a explicaçäo!).
i------------------------------------------------------------------©
¦ Representando números negativos em binário ¦
È------------------------------------------------------------------¥
Um artificio da algebra booleana para representar um número
interiro negativo é usar o último bit como indicador do sinal do
número. Mas, esse artificio gera uma segunda complicaçäo...
Limitemos esse estudo ao tamanho de um byte (8 bits)... Se o
bit 7 (a contagem começa pelo bit 0 - mais a direita) for 0 o número
representado é positivo, se for 1, é negativo. Essa é a diferença
entre um "char" e um "unsigned char" na linguagem C - ou um "char" e
um "byte" em PASCAL (Note que um "unsigned char" pode variar de 0
até 255 - 00000000b até 11111111b - e um "signed char" pode variar
de -128 até 127 - exatamenta a mesma faixa, porém um tem sinal e o
outro näo!).
A complicaçäo que falei acima é com relaçäo à representaçäo dos
números negativos. Quando um número näo é nagativo, basta
convertê-lo para base decimal que você saberá qual é esse número, no
entanto, números negativos precisam ser "complementados" para que
saibamos o número que está sendo representado. A coisa NÄO funciona
da seguinte forma:
+----------------------------------------------------------------+
¦ 00001010b = 10 ¦
¦ 10001010b = -10 (ERRADO) ¦
+----------------------------------------------------------------+
Näo basta "esquecermos" o bit 7 e lermos o restante do byte. O
procedimento correto para sabermos que número está sendo
representado negativamente no segundo exemplo é:
¦ Inverte-se todos os bits
¦ Soma-se 1 ao resultado
+---------------------------------------------------------------+
¦ 10001010b -> 01110101b + 00000001b -> 01110110b ¦
¦ 01110110b = 118 ¦
¦ Logo: ¦
¦ 10001010b = -118 ¦
+---------------------------------------------------------------+
Com isso podemos explicar a diferença entre os extremos da faixa
de um "signed char":
¦ Os números positivos contam de 00000000b até 01111111b, isto
é, de 0 até 127.
¦ Os números negativos contam de 10000000b até 11111111b, isto
é, de -128 até -1.
Em "C" (ou PASCAL), a mesma lógica pode ser aplicada aos "int" e
"long" (ou INTEGER e LONGINT), só que a quantidade de bits será
maior ("int" tem 16 bits de tamanho e "long" tem 32).
Näo se preocupe MUITO com a representaçäo de números negativos
em binário... A CPU toma conta de tudo isso sozinha... mas, as
vezes, você tem que saber que resultado poderá ser obtido de uma
operaçäo aritimética em seus programas, ok?
As outras duas operaçöes matemáticas básicas (multiplicaçäo e
divisäo) tanbém estäo presentes nos processadores 80x86... Mas, näo
necessitamos ver como o processo é feito a nível binário. Confie na
CPU! :)
Good tutor
ResponderExcluir